import tensorflow as tf

def get_simple_graph_def():
  """Create a simple graph and return its graph_def."""
  g = tf.Graph()
  with g.as_default():
    a = tf.placeholder(
        dtype=tf.float32, shape=(None, 24, 24, 2), name="input")
    e = tf.constant(
        [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
        name="weights",
        dtype=tf.float32)
    conv = tf.nn.conv2d(
        input=a, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv")
    b = tf.constant(
        [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=tf.float32)
    t = tf.nn.bias_add(conv, b, name="biasAdd")
    relu = tf.nn.relu(t, "relu")
    idty = tf.identity(relu, "ID")
    v = tf.nn.max_pool(
        idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
    tf.squeeze(v, name="output")
  return g.as_graph_def()