import tensorflow as tf def get_simple_graph_def(): """Create a simple graph and return its graph_def.""" g = tf.Graph() with g.as_default(): a = tf.placeholder( dtype=tf.float32, shape=(None, 24, 24, 2), name="input") e = tf.constant( [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]], name="weights", dtype=tf.float32) conv = tf.nn.conv2d( input=a, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv") b = tf.constant( [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=tf.float32) t = tf.nn.bias_add(conv, b, name="biasAdd") relu = tf.nn.relu(t, "relu") idty = tf.identity(relu, "ID") v = tf.nn.max_pool( idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool") tf.squeeze(v, name="output") return g.as_graph_def()