import tensorflow as tf
from tensorflow.contrib import tensorrt as trt

import numpy as np

def get_simple_graph_def():
  """Create a simple graph and return its graph_def."""
  g = tf.Graph()
  with g.as_default():
    a = tf.placeholder(
        dtype=tf.float32, shape=(None, 24, 24, 2), name="input")
    e = tf.constant(
        [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
        name="weights",
        dtype=tf.float32)
    conv = tf.nn.conv2d(
        input=a, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv")
    b = tf.constant(
        [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=tf.float32)
    t = tf.nn.bias_add(conv, b, name="biasAdd")
    relu = tf.nn.relu(t, "relu")
    idty = tf.identity(relu, "ID")
    v = tf.nn.max_pool(
        idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
    tf.squeeze(v, name="output")
  return g.as_graph_def()

def run_graph(gdef, dumm_inp):
  """Run given graphdef once."""
  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50)
  tf.reset_default_graph()
  g = tf.Graph()
  with g.as_default():
    inp, out = tf.graph_util.import_graph_def(
        graph_def=gdef, return_elements=["input", "output"])
    inp = inp.outputs[0]
    out = out.outputs[0]
  with tf.Session(
      config=tf.ConfigProto(gpu_options=gpu_options), graph=g) as sess:
    val = sess.run(out, {inp: dumm_inp})
  return val

inp_dims = (100, 24, 24, 2)
dummy_input = np.random.random_sample(inp_dims)

orig_graph = get_simple_graph_def()  # use a frozen graph for inference

trt_graph = trt.create_inference_graph(
  input_graph_def=orig_graph,
  outputs=["output"],
  max_batch_size=inp_dims[0],
  max_workspace_size_bytes=1 << 25,
  precision_mode="FP32",  # TRT Engine precision "FP32","FP16" or "INT8"
  minimum_segment_size=2  # minimum number of nodes in an engine
)

o1 = run_graph(orig_graph, dummy_input)
o2 = run_graph(trt_graph, dummy_input)

assert np.array_equal(o1, o2)

int8_calib_gdef = trt.create_inference_graph(
  input_graph_def=orig_graph,
  outputs=["output"],
  max_batch_size=inp_dims[0],
  max_workspace_size_bytes=1 << 25,
  precision_mode="INT8",  # TRT Engine precision "FP32","FP16" or "INT8"
  minimum_segment_size=2  # minimum number of nodes in an engine
)

int8_graph = int8_calib_gdef
#int8_graph = trt.calib_graph_to_infer_graph(int8_calib_gdef)
o5 = run_graph(int8_graph, dummy_input)

assert np.allclose(o1, o5)