import tensorflow as tf
from tensorflow.contrib import tensorrt as trt
import numpy as np
from lib import get_simple_graph_def
def run_graph(gdef, dumm_inp):
"""Run given graphdef once."""
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50)
tf.reset_default_graph()
g = tf.Graph()
with g.as_default():
inp, out = tf.graph_util.import_graph_def(
graph_def=gdef, return_elements=["input", "output"])
inp = inp.outputs[0]
out = out.outputs[0]
with tf.Session(
config=tf.ConfigProto(gpu_options=gpu_options), graph=g) as sess:
val = sess.run(out, {inp: dumm_inp})
return val
inp_dims = (100, 24, 24, 2)
dummy_input = np.random.random_sample(inp_dims)
orig_graph = get_simple_graph_def() # use a frozen graph for inference
trt_graph = trt.create_inference_graph(
input_graph_def=orig_graph,
outputs=["output"],
max_batch_size=inp_dims[0],
max_workspace_size_bytes=1 << 25,
precision_mode="FP32", # TRT Engine precision "FP32","FP16" or "INT8"
minimum_segment_size=2 # minimum number of nodes in an engine
)
o1 = run_graph(orig_graph, dummy_input)
o2 = run_graph(trt_graph, dummy_input)
assert np.array_equal(o1, o2)
int8_calib_gdef = trt.create_inference_graph(
input_graph_def=orig_graph,
outputs=["output"],
max_batch_size=inp_dims[0],
max_workspace_size_bytes=1 << 25,
precision_mode="INT8", # TRT Engine precision "FP32","FP16" or "INT8"
minimum_segment_size=2 # minimum number of nodes in an engine
)
int8_graph = int8_calib_gdef
#int8_graph = trt.calib_graph_to_infer_graph(int8_calib_gdef)
o5 = run_graph(int8_graph, dummy_input)
assert np.allclose(o1, o5)