Browse code

버그 수정

Ikseon Kang authored on29/06/2019 13:26:01
Showing1 changed files
... ...
@@ -4,8 +4,8 @@ import iris_data
4 4
 
5 5
 (train_x, train_y), (test_x, test_y) = iris_data.load_data()
6 6
 
7
-print np.shape(train_x)
8
-print np.shape(train_y)
7
+print (np.shape(train_x))
8
+print (np.shape(train_y))
9 9
 
10 10
 feature_columns = []
11 11
 for key in train_x.keys():
... ...
@@ -41,7 +41,7 @@ def test_input_fn(x, y, batch_size):
41 41
     return dataset
42 42
 
43 43
 result = classifier.evaluate(input_fn = lambda:iris_data.eval_input_fn(test_x, test_y, batch_size))
44
-print result
44
+print (result)
45 45
 
46 46
 predict_x = {
47 47
     'SepalLength': [5.1, 5.9, 6.9],
... ...
@@ -53,4 +53,4 @@ predict_x = {
53 53
 predictions = classifier.predict(input_fn=lambda:test_input_fn(predict_x, y=None, batch_size=batch_size))
54 54
 
55 55
 for p in predictions:
56
-    print p
56
+    print (p)
Browse code

실행 파일 추가

Nepirity Corp authored on17/04/2018 15:34:56
Showing1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,56 @@
1
+import tensorflow as tf
2
+import numpy as np
3
+import iris_data
4
+
5
+(train_x, train_y), (test_x, test_y) = iris_data.load_data()
6
+
7
+print np.shape(train_x)
8
+print np.shape(train_y)
9
+
10
+feature_columns = []
11
+for key in train_x.keys():
12
+    feature_columns.append(tf.feature_column.numeric_column(key))
13
+
14
+classifier = tf.estimator.DNNClassifier(
15
+    feature_columns = feature_columns,
16
+    hidden_units=[10, 10],
17
+    n_classes = 3,
18
+)
19
+
20
+batch_size = 100
21
+steps = 1000
22
+
23
+def train_input_fn(x, y, batch_size):
24
+    dataset = tf.data.Dataset.from_tensor_slices((dict(x), y))
25
+    dataset = dataset.shuffle(1000).repeat().batch(batch_size)
26
+
27
+    return dataset
28
+
29
+classifier.train(input_fn = lambda:train_input_fn(train_x, train_y, batch_size), steps = steps)
30
+
31
+def test_input_fn(x, y, batch_size):
32
+    x=dict(x)
33
+    if y is None:
34
+        inputs = x
35
+    else:
36
+        inputs = (x, y)
37
+
38
+    dataset = tf.data.Dataset.from_tensor_slices(inputs)
39
+    dataset = dataset.batch(batch_size)
40
+
41
+    return dataset
42
+
43
+result = classifier.evaluate(input_fn = lambda:iris_data.eval_input_fn(test_x, test_y, batch_size))
44
+print result
45
+
46
+predict_x = {
47
+    'SepalLength': [5.1, 5.9, 6.9],
48
+    'SepalWidth': [3.3, 3.0, 3.1],
49
+    'PetalLength': [1.7, 4.2, 5.4],
50
+    'PetalWidth': [0.5, 1.5, 2.1],
51
+}
52
+
53
+predictions = classifier.predict(input_fn=lambda:test_input_fn(predict_x, y=None, batch_size=batch_size))
54
+
55
+for p in predictions:
56
+    print p