| 2 | 3 |
new file mode 100644 |
| ... | ... |
@@ -0,0 +1,93 @@ |
| 1 |
+import pandas as pd |
|
| 2 |
+import tensorflow as tf |
|
| 3 |
+ |
|
| 4 |
+TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv" |
|
| 5 |
+TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" |
|
| 6 |
+ |
|
| 7 |
+CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', |
|
| 8 |
+ 'PetalLength', 'PetalWidth', 'Species'] |
|
| 9 |
+SPECIES = ['Setosa', 'Versicolor', 'Virginica'] |
|
| 10 |
+ |
|
| 11 |
+def maybe_download(): |
|
| 12 |
+ train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
|
|
| 13 |
+ test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
|
|
| 14 |
+ |
|
| 15 |
+ return train_path, test_path |
|
| 16 |
+ |
|
| 17 |
+def load_data(y_name='Species'): |
|
| 18 |
+ """Returns the iris dataset as (train_x, train_y), (test_x, test_y).""" |
|
| 19 |
+ train_path, test_path = maybe_download() |
|
| 20 |
+ |
|
| 21 |
+ train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0) |
|
| 22 |
+ train_x, train_y = train, train.pop(y_name) |
|
| 23 |
+ |
|
| 24 |
+ test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0) |
|
| 25 |
+ test_x, test_y = test, test.pop(y_name) |
|
| 26 |
+ |
|
| 27 |
+ return (train_x, train_y), (test_x, test_y) |
|
| 28 |
+ |
|
| 29 |
+ |
|
| 30 |
+def train_input_fn(features, labels, batch_size): |
|
| 31 |
+ """An input function for training""" |
|
| 32 |
+ # Convert the inputs to a Dataset. |
|
| 33 |
+ dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) |
|
| 34 |
+ |
|
| 35 |
+ # Shuffle, repeat, and batch the examples. |
|
| 36 |
+ dataset = dataset.shuffle(1000).repeat().batch(batch_size) |
|
| 37 |
+ |
|
| 38 |
+ # Return the dataset. |
|
| 39 |
+ return dataset |
|
| 40 |
+ |
|
| 41 |
+ |
|
| 42 |
+def eval_input_fn(features, labels, batch_size): |
|
| 43 |
+ """An input function for evaluation or prediction""" |
|
| 44 |
+ features=dict(features) |
|
| 45 |
+ if labels is None: |
|
| 46 |
+ # No labels, use only features. |
|
| 47 |
+ inputs = features |
|
| 48 |
+ else: |
|
| 49 |
+ inputs = (features, labels) |
|
| 50 |
+ |
|
| 51 |
+ # Convert the inputs to a Dataset. |
|
| 52 |
+ dataset = tf.data.Dataset.from_tensor_slices(inputs) |
|
| 53 |
+ |
|
| 54 |
+ # Batch the examples |
|
| 55 |
+ assert batch_size is not None, "batch_size must not be None" |
|
| 56 |
+ dataset = dataset.batch(batch_size) |
|
| 57 |
+ |
|
| 58 |
+ # Return the dataset. |
|
| 59 |
+ return dataset |
|
| 60 |
+ |
|
| 61 |
+ |
|
| 62 |
+# The remainder of this file contains a simple example of a csv parser, |
|
| 63 |
+# implemented using a the `Dataset` class. |
|
| 64 |
+ |
|
| 65 |
+# `tf.parse_csv` sets the types of the outputs to match the examples given in |
|
| 66 |
+# the `record_defaults` argument. |
|
| 67 |
+CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], [0]] |
|
| 68 |
+ |
|
| 69 |
+def _parse_line(line): |
|
| 70 |
+ # Decode the line into its fields |
|
| 71 |
+ fields = tf.decode_csv(line, record_defaults=CSV_TYPES) |
|
| 72 |
+ |
|
| 73 |
+ # Pack the result into a dictionary |
|
| 74 |
+ features = dict(zip(CSV_COLUMN_NAMES, fields)) |
|
| 75 |
+ |
|
| 76 |
+ # Separate the label from the features |
|
| 77 |
+ label = features.pop('Species')
|
|
| 78 |
+ |
|
| 79 |
+ return features, label |
|
| 80 |
+ |
|
| 81 |
+ |
|
| 82 |
+def csv_input_fn(csv_path, batch_size): |
|
| 83 |
+ # Create a dataset containing the text lines. |
|
| 84 |
+ dataset = tf.data.TextLineDataset(csv_path).skip(1) |
|
| 85 |
+ |
|
| 86 |
+ # Parse each line. |
|
| 87 |
+ dataset = dataset.map(_parse_line) |
|
| 88 |
+ |
|
| 89 |
+ # Shuffle, repeat, and batch the examples. |
|
| 90 |
+ dataset = dataset.shuffle(1000).repeat().batch(batch_size) |
|
| 91 |
+ |
|
| 92 |
+ # Return the dataset. |
|
| 93 |
+ return dataset |
| 0 | 94 |
new file mode 100644 |
| ... | ... |
@@ -0,0 +1,56 @@ |
| 1 |
+import tensorflow as tf |
|
| 2 |
+import numpy as np |
|
| 3 |
+import iris_data |
|
| 4 |
+ |
|
| 5 |
+(train_x, train_y), (test_x, test_y) = iris_data.load_data() |
|
| 6 |
+ |
|
| 7 |
+print np.shape(train_x) |
|
| 8 |
+print np.shape(train_y) |
|
| 9 |
+ |
|
| 10 |
+feature_columns = [] |
|
| 11 |
+for key in train_x.keys(): |
|
| 12 |
+ feature_columns.append(tf.feature_column.numeric_column(key)) |
|
| 13 |
+ |
|
| 14 |
+classifier = tf.estimator.DNNClassifier( |
|
| 15 |
+ feature_columns = feature_columns, |
|
| 16 |
+ hidden_units=[10, 10], |
|
| 17 |
+ n_classes = 3, |
|
| 18 |
+) |
|
| 19 |
+ |
|
| 20 |
+batch_size = 100 |
|
| 21 |
+steps = 1000 |
|
| 22 |
+ |
|
| 23 |
+def train_input_fn(x, y, batch_size): |
|
| 24 |
+ dataset = tf.data.Dataset.from_tensor_slices((dict(x), y)) |
|
| 25 |
+ dataset = dataset.shuffle(1000).repeat().batch(batch_size) |
|
| 26 |
+ |
|
| 27 |
+ return dataset |
|
| 28 |
+ |
|
| 29 |
+classifier.train(input_fn = lambda:train_input_fn(train_x, train_y, batch_size), steps = steps) |
|
| 30 |
+ |
|
| 31 |
+def test_input_fn(x, y, batch_size): |
|
| 32 |
+ x=dict(x) |
|
| 33 |
+ if y is None: |
|
| 34 |
+ inputs = x |
|
| 35 |
+ else: |
|
| 36 |
+ inputs = (x, y) |
|
| 37 |
+ |
|
| 38 |
+ dataset = tf.data.Dataset.from_tensor_slices(inputs) |
|
| 39 |
+ dataset = dataset.batch(batch_size) |
|
| 40 |
+ |
|
| 41 |
+ return dataset |
|
| 42 |
+ |
|
| 43 |
+result = classifier.evaluate(input_fn = lambda:iris_data.eval_input_fn(test_x, test_y, batch_size)) |
|
| 44 |
+print result |
|
| 45 |
+ |
|
| 46 |
+predict_x = {
|
|
| 47 |
+ 'SepalLength': [5.1, 5.9, 6.9], |
|
| 48 |
+ 'SepalWidth': [3.3, 3.0, 3.1], |
|
| 49 |
+ 'PetalLength': [1.7, 4.2, 5.4], |
|
| 50 |
+ 'PetalWidth': [0.5, 1.5, 2.1], |
|
| 51 |
+} |
|
| 52 |
+ |
|
| 53 |
+predictions = classifier.predict(input_fn=lambda:test_input_fn(predict_x, y=None, batch_size=batch_size)) |
|
| 54 |
+ |
|
| 55 |
+for p in predictions: |
|
| 56 |
+ print p |