1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,64 @@ |
1 |
+import tensorflow as tf |
|
2 |
+import iris_data |
|
3 |
+ |
|
4 |
+tf.logging.set_verbosity(tf.logging.INFO) |
|
5 |
+ |
|
6 |
+def model_fn(features, labels, mode, params): |
|
7 |
+ net = tf.feature_column.input_layer(features, params['feature_columns']) |
|
8 |
+ |
|
9 |
+ for units in params['hidden_units']: |
|
10 |
+ net = tf.layers.dense(net, units=units, activation=tf.nn.relu) |
|
11 |
+ |
|
12 |
+ logits = tf.layers.dense(net, units=params['n_classes'], activation=None) |
|
13 |
+ |
|
14 |
+ predictions = {'probabilities':tf.nn.softmax(logits, 1)} |
|
15 |
+ |
|
16 |
+ if mode == tf.estimator.ModeKeys.PREDICT: |
|
17 |
+ return tf.estimator.EstimatorSpec(mode, predictions = predictions) |
|
18 |
+ |
|
19 |
+ loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) |
|
20 |
+ |
|
21 |
+ eval_metric_ops = {'accuracy':tf.metrics.accuracy(labels=labels, predictions=tf.argmax(logits, 1))} |
|
22 |
+ |
|
23 |
+ if mode == tf.estimator.ModeKeys.EVAL: |
|
24 |
+ return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops = eval_metric_ops) |
|
25 |
+ |
|
26 |
+ # Create training op. |
|
27 |
+ assert mode == tf.estimator.ModeKeys.TRAIN |
|
28 |
+ |
|
29 |
+ optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) |
|
30 |
+ train_op = optimizer.minimize(loss=loss, global_step = tf.train.get_global_step()) |
|
31 |
+ |
|
32 |
+ return tf.estimator.EstimatorSpec(mode, loss=loss, train_op = train_op) |
|
33 |
+ |
|
34 |
+train, test = iris_data.load_data() |
|
35 |
+ |
|
36 |
+train_x, train_y = train |
|
37 |
+test_x, test_y = test |
|
38 |
+ |
|
39 |
+feature_columns = [] |
|
40 |
+ |
|
41 |
+for key in train_x.keys(): |
|
42 |
+ feature_columns.append(tf.feature_column.numeric_column(key)) |
|
43 |
+ |
|
44 |
+classifier = tf.estimator.Estimator( |
|
45 |
+ model_fn = model_fn, |
|
46 |
+ params = {"n_classes":3, "feature_columns":feature_columns, "hidden_units":[10, 10]} |
|
47 |
+) |
|
48 |
+ |
|
49 |
+classifier.train(input_fn = lambda:iris_data.train_input_fn(train_x, train_y, 100), steps=1000) |
|
50 |
+ |
|
51 |
+result = classifier.evaluate(input_fn = lambda : iris_data.eval_input_fn(test_x, test_y, 100)) |
|
52 |
+print result |
|
53 |
+ |
|
54 |
+predict_x = { |
|
55 |
+ 'SepalLength': [5.1, 5.9, 6.9], |
|
56 |
+ 'SepalWidth': [3.3, 3.0, 3.1], |
|
57 |
+ 'PetalLength': [1.7, 4.2, 5.4], |
|
58 |
+ 'PetalWidth': [0.5, 1.5, 2.1], |
|
59 |
+} |
|
60 |
+ |
|
61 |
+predictions = classifier.predict(input_fn = lambda : iris_data.eval_input_fn(predict_x, None, 100)) |
|
62 |
+ |
|
63 |
+for p in predictions: |
|
64 |
+ print p |