... | ... |
@@ -4,8 +4,8 @@ import iris_data |
4 | 4 |
|
5 | 5 |
(train_x, train_y), (test_x, test_y) = iris_data.load_data() |
6 | 6 |
|
7 |
-print np.shape(train_x) |
|
8 |
-print np.shape(train_y) |
|
7 |
+print (np.shape(train_x)) |
|
8 |
+print (np.shape(train_y)) |
|
9 | 9 |
|
10 | 10 |
feature_columns = [] |
11 | 11 |
for key in train_x.keys(): |
... | ... |
@@ -41,7 +41,7 @@ def test_input_fn(x, y, batch_size): |
41 | 41 |
return dataset |
42 | 42 |
|
43 | 43 |
result = classifier.evaluate(input_fn = lambda:iris_data.eval_input_fn(test_x, test_y, batch_size)) |
44 |
-print result |
|
44 |
+print (result) |
|
45 | 45 |
|
46 | 46 |
predict_x = { |
47 | 47 |
'SepalLength': [5.1, 5.9, 6.9], |
... | ... |
@@ -53,4 +53,4 @@ predict_x = { |
53 | 53 |
predictions = classifier.predict(input_fn=lambda:test_input_fn(predict_x, y=None, batch_size=batch_size)) |
54 | 54 |
|
55 | 55 |
for p in predictions: |
56 |
- print p |
|
56 |
+ print (p) |